Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.302
Filtrar
1.
J Hazard Mater ; 471: 134276, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640682

RESUMO

Environmental pollution from cadmium (Cd) presents a serious threat to plant growth and development. Therefore, it's crucial to find out how plants resist this toxic metal to develop strategies for remediating Cd-contaminated soils. In this study, we identified CIP1, a transporter protein, by screening interactors of the protein kinase CIPK23. CIP1 is located in vesicles membranes and can transport Cd2+ when expressed in yeast cells. Cd stress specifically induced the accumulation of CIP1 transcripts and functional proteins, particularly in the epidermal cells of the root tip. CIKP23 could interact directly with the central loop region of CIP1, phosphorylating it, which is essential for the efficient transport of Cd2+. A loss-of-function mutation of CIP1 in wild-type plants led to increased sensitivity to Cd stress. Conversely, tobacco plants overexpressing CIP1 exhibited improved Cd tolerance and increased Cd accumulation capacity. Interestingly, this Cd accumulation was restricted to roots but not shoots, suggesting that manipulating CIP1 does not risk Cd contamination of plants' edible parts. Overall, this study characterizes a novel Cd transporter, CIP1, with potential to enhance plant tolerance to Cd toxicity while effectively eliminating environmental contamination without economic losses.


Assuntos
Biodegradação Ambiental , Cádmio , Nicotiana , Cádmio/toxicidade , Cádmio/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Nicotiana/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Plantas Geneticamente Modificadas/metabolismo
2.
J Biol Chem ; 300(4): 107167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490436

RESUMO

The increasing prevalence of herbicide-resistant weeds has led to a search for new herbicides that target plant growth processes differing from those targeted by current herbicides. In recent years, some studies have explored the use of natural compounds from microorganisms as potential new herbicides. We previously demonstrated that tenuazonic acid (TeA) from the phytopathogenic fungus Stemphylium loti inhibits the plant plasma membrane (PM) H+-ATPase, representing a new target for herbicides. In this study, we further investigated the mechanism by which TeA inhibits PM H+-ATPase and the effect of the toxin on plant growth using Arabidopsis thaliana. We also studied the biochemical effects of TeA on the PM H+-ATPases from spinach (Spinacia oleracea) and A. thaliana (AHA2) by examining PM H+-ATPase activity under different conditions and in different mutants. Treatment with 200 µM TeA-induced cell necrosis in larger plants and treatment with 10 µM TeA almost completely inhibited cell elongation and root growth in seedlings. We show that the isoleucine backbone of TeA is essential for inhibiting the ATPase activity of the PM H+-ATPase. Additionally, this inhibition depends on the C-terminal domain of AHA2, and TeA binding to PM H+-ATPase requires the Regulatory Region I of the C-terminal domain in AHA2. TeA likely has a higher binding affinity toward PM H+-ATPase than the phytotoxin fusicoccin. Finally, our findings show that TeA retains the H+-ATPase in an inhibited state, suggesting that it could act as a lead compound for creating new herbicides targeting the PM H+-ATPase.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Herbicidas , ATPases Translocadoras de Prótons , Spinacia oleracea , Ácido Tenuazônico , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/enzimologia , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , Ácido Tenuazônico/metabolismo , Ácido Tenuazônico/farmacologia , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Herbicidas/farmacologia , Herbicidas/química , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/crescimento & desenvolvimento , Spinacia oleracea/metabolismo
3.
J Biol Chem ; 299(12): 105366, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863264

RESUMO

Hypoxic responses in plants involve Plant Cysteine Oxidases (PCOs). They catalyze the N-terminal cysteine oxidation of Ethylene Response Factors VII (ERF-VII) in an oxygen-dependent manner, leading to their degradation via the cysteine N-degron pathway (Cys-NDP) in normoxia. In hypoxia, PCO activity drops, leading to the stabilization of ERF-VIIs and subsequent hypoxic gene upregulation. Thus far, no chemicals have been described to specifically inhibit PCO enzymes. In this work, we devised an in vivo pipeline to discover Cys-NDP effector molecules. Budding yeast expressing AtPCO4 and plant-based ERF-VII reporters was deployed to screen a library of natural-like chemical scaffolds and was further combined with an Arabidopsis Cys-NDP reporter line. This strategy allowed us to identify three PCO inhibitors, two of which were shown to affect PCO activity in vitro. Application of these molecules to Arabidopsis seedlings led to an increase in ERF-VII stability, induction of anaerobic gene expression, and improvement of tolerance to anoxia. By combining a high-throughput heterologous platform and the plant model Arabidopsis, our synthetic pipeline provides a versatile system to study how the Cys-NDP is modulated. Its first application here led to the discovery of at least two hypoxia-mimicking molecules with the potential to impact plant tolerance to low oxygen stress.


Assuntos
Proteínas de Arabidopsis , Cisteína Dioxigenase , Inibidores Enzimáticos , Bibliotecas de Moléculas Pequenas , Humanos , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Cisteína Dioxigenase/antagonistas & inibidores , Cisteína Dioxigenase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Plântula/efeitos dos fármacos , Anaerobiose , Degrons , Ativação Enzimática/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia
4.
J Hazard Mater ; 460: 132496, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703737

RESUMO

Cadmium (Cd) has long been recognized as toxic pollutant to crops worldwide. The biosynthesis of glutathione-dependent phytochelatin (PC) plays crucial roles in the detoxification of Cd in plants. However, its regulatory mechanism remains elusive. Here, we revealed that Arabidopsis transcription factor WRKY45 confers Cd tolerance via promoting the expression of PC synthesis-related genes PCS1 and PCS2, respectively. Firstly, we found that Cd stress induces the transcript levels of WRKY45 and its protein abundance. Accordingly, in contrast to wild type Col-0, the increased sensitivity to Cd is observed in wrky45 mutant, while overexpressing WRKY45 plants are more tolerant to Cd. Secondly, quantitative real-time PCR revealed that the expression of AtPCS1 and AtPCS2 is stimulated in overexpressing WRKY45 plants, but decreased in wrky45 mutant. Thirdly, WRKY45 promotes the expression of PCS1 and PCS2, electrophoresis mobility shift assay analysis uncovered that WRKY45 directly binds to the W-box cis-element of PCS2 promoter. Lastly, the overexpression of WRKY45 in Col-0 leads to more accumulation of PCs in Arabidopsis, and the overexpression of PCS1 or PCS2 in wrky45 mutant plants rescues the phenotypes induced by Cd stress. In conclusion, our results show that AtWRKY45 positively regulates Cd tolerance in Arabidopsis via activating PCS1 and PCS2 expression.


Assuntos
Arabidopsis , Cádmio , Fatores de Transcrição , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Cádmio/toxicidade , Produtos Agrícolas , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Tungstênio
5.
Planta ; 257(3): 53, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36773095

RESUMO

MAIN CONCLUSION: Molecular, biochemical, and genetic experiments demonstrate that metal-responsive elements (MREs), initially identified in animals, confer the cadmium transcriptional response in Arabidopsis, thus providing deep functional insights of MREs in plants. Cadmium (Cd) is highly toxic to all organisms including plants. Cd-responsive gene transcription is a fundamental aspect of the Cd response, in which Cd stress regulatory cis-acting elements are essential. However, little is known regarding such elements in plants. Metal-responsive elements (MREs, 5'-TGCRCNC-3', R: A or G, N: any base) are essential for transcriptional induction of Cd in animals. MREs are also contained in the promoters of some Cd-regulated plant genes, but whether MREs confer Cd responses in plants is poorly defined. Herein, we used a previously identified MRE of the tobacco feedback-insensitive anthranilate synthase α-2 chain gene as a representative MRE (named as MREa, 5'-TGCACAC-3') to explore the roles of MREs in the transcriptional response to Cd stress in Arabidopsis thaliana. First, we showed that MREa conferred Cd stress responsiveness on a minimal promoter in both concentration- and time-dependent manners, whereas the mutated MREa did not. Second, MREa specifically bound nuclear extracts, displaying a biochemical characteristic of cis-acting elements. We screened and identified four MREa-binding transcription factors, including ethylene response factor 13 (AtERF13). At last, MREa could mediate AtERF13 to activate the ß-glucuronidase (GUS) reporter expression. Overall, these molecular, biochemical, and genetic data suggest that MREa is instrumental in the Cd response in Arabidopsis, thus providing deep functional insights of MREs in plants.


Assuntos
Arabidopsis , Cádmio , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Cádmio/toxicidade , Metais , Elementos de Resposta , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163311

RESUMO

Hydrogen sulfide (H2S) is an endogenous gaseous molecule that plays an important role in the plant life cycle. The multiple transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) was precisely regulated to participate in the abscisic acid (ABA) mediated signaling cascade. However, the molecular mechanisms of how H2S regulates ABI4 protein level to control seed germination and seedling growth have remained elusive. In this study, we demonstrated that ABI4 controls the expression of L-CYSTEINE DESULFHYDRASE1 (DES1), a critical endogenous H2S-producing enzyme, and both ABI4 and DES1-produced H2S have inhibitory effects on seed germination. Furthermore, the ABI4 level decreased during seed germination while H2S triggered the enhancement of the persulfidation level of ABI4 and alleviated its degradation rate, which in turn inhibited seed germination and seedling establishment. Conversely, the mutation of ABI4 at Cys250 decreased ABI4 protein stability and facilitated seed germination. Moreover, ABI4 degradation is also regulated via the 26S proteasome pathway. Taken together, these findings suggest a molecular link between DES1 and ABI4 through the post-translational modifications of persulfidation during early seedling development.


Assuntos
Ácido Abscísico/farmacologia , Sulfeto de Hidrogênio/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Sementes/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Cisteína/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Germinação/efeitos dos fármacos , Mutação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética
7.
Gene ; 823: 146358, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35202731

RESUMO

Glutathione (GSH) is a multifunctional essential biothiol, and its metabolism is important for plant against toxic metals and metalloids. γ-Glutamylcysteine (γ-EC), which is catalyzed by γ-Glutamylcysteine synthetase (γ-ECS), is a rate-limiting intermediate in GSH synthesis. Here, a γ-ECS gene (Vsγ-ECS) from Vicia sativa was cloned, and its function in modulating Cd tolerance was studied. Vsγ-ECS is a chloroplast localization protein, and the expression of Vsγ-ECS was upregulated by Cd stress in root of V. sativa. Heterologous expression of Vsγ-ECS (35S::Vsγ-ECS) in Arabidopsis enhanced the Cd tolerance of plants through improved primary root length, fresh weight, chlorophyll content and low degree of oxidation associated with reduced H2O2 and lipid peroxidation. However, the Cd accumulation of Arabidopsis had no effect on Vsγ-ECS overexpression. Further analysis showed that the increased Cd tolerance in 35S::Vsγ-ECS was mainly due to the capacity of increasing GSH synthesis that improved Cd chelation by GSH and phytochelatins (PCs) and alleviated the oxidative stress caused by Cd stress. In summary, a γ-ECS was characterized from V. sativa, and it demonstrated a property for increasing GSH and PC synthesis to protect plants from Cd poisoning.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Cádmio/efeitos adversos , Glutamato-Cisteína Ligase/genética , Vicia sativa/enzimologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Clonagem Molecular , Resistência a Medicamentos , Expressão Ectópica do Gene , Glutamato-Cisteína Ligase/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Análise de Sequência de DNA , Vicia sativa/genética
8.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055009

RESUMO

The heavy metal cadmium (Cd) affects root system development and quiescent center (QC)-definition in Arabidopsis root-apices. The brassinosteroids-(BRs)-mediated tolerance to heavy metals has been reported to occur by a modulation of nitric oxide (NO) and root auxin-localization. However, how BRs counteract Cd-action in different root types is unknown. This research aimed to find correlations between BRs and NO in response to Cd in Arabidopsis's root system, monitoring their effects on QC-definition and auxin localization in root-apices. To this aim, root system developmental changes induced by low levels of 24-epibrassinolide (eBL) or by the BR-biosynthesis inhibitor brassinazole (Brz), combined or not with CdSO4, and/or with the NO-donor nitroprusside (SNP), were investigated using morpho-anatomical and NO-epifluorescence analyses, and monitoring auxin-localization by the DR5::GUS system. Results show that eBL, alone or combined with Cd, enhances lateral (LR) and adventitious (AR) root formation and counteracts QC-disruption and auxin-delocalization caused by Cd in primary root/LR/AR apices. Exogenous NO enhances LR and AR formation in Cd-presence, without synergism with eBL. The NO-signal is positively affected by eBL, but not in Cd-presence, and BR-biosynthesis inhibition does not change the low NO-signal caused by Cd. Collectively, results show that BRs ameliorate Cd-effects on all root types acting independently from NO.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Brassinosteroides/farmacologia , Cádmio/farmacologia , Óxido Nítrico/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Transporte Biológico/efeitos dos fármacos , Sinergismo Farmacológico , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento
9.
Plant Mol Biol ; 108(3): 225-239, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35038066

RESUMO

KEY MESSAGE: This study focused on the role of CLE1-7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots. In the natural environment, plants employ diverse signaling molecules including peptides to defend themselves against various pathogen attacks. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) genes (CLE1-7) respond to biotic stimuli. CLE3 showed significant up-regulation upon treatment with flg22, Pep2, and salicylic acid (SA). Quantitative real-time PCR (qRT-PCR) analysis revealed that CLE3 expression is regulated by the NON-EXPRESSOR OF PR GENES1 (NPR1)-dependent SA signaling and flg22-FLAGELLIN-SENSITIVE 2 (FLS2) signaling pathways. We demonstrated that SA-induced up-regulation of CLE3 in roots was required for activation of WRKY33, a gene involved in the regulation of systemic acquired resistance (SAR), in shoots, suggesting that CLE3 functions as a root-derived signal that regulates the expression of defense-related genes in shoots. Microarray analysis of transgenic Arabidopsis lines overexpressing CLE3 under the control of a ß-estradiol-inducible promoter revealed that root-confined CLE3 overexpression affected gene expression in both roots and shoots. Comparison of CLE2- and CLE3-induced genes indicated that CLE2 and CLE3 peptides target a few common but largely distinct downstream genes. These results suggest that root-derived CLE3 is involved in the regulation of systemic rather than local immune responses. Our study also sheds light on the potential role of CLE peptides in long-distance regulation of plant immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação para Baixo , Estradiol/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular , Raízes de Plantas/genética , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Ácido Salicílico/farmacologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Transcrição/genética , Regulação para Cima
10.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008903

RESUMO

Aluminum (Al) toxicity is the main factor limiting plant growth and the yield of cereal crops in acidic soils. Al-induced oxidative stress could lead to the excessive accumulation of reactive oxygen species (ROS) and aldehydes in plants. Aldehyde dehydrogenase (ALDH) genes, which play an important role in detoxification of aldehydes when exposed to abiotic stress, have been identified in most species. However, little is known about the function of this gene family in the response to Al stress. Here, we identified an ALDH gene in maize, ZmALDH, involved in protection against Al-induced oxidative stress. Al stress up-regulated ZmALDH expression in both the roots and leaves. The expression of ZmALDH only responded to Al toxicity but not to other stresses including low pH and other metals. The heterologous overexpression of ZmALDH in Arabidopsis increased Al tolerance by promoting the ascorbate-glutathione cycle, increasing the transcript levels of antioxidant enzyme genes as well as the activities of their products, reducing MDA, and increasing free proline synthesis. The overexpression of ZmALDH also reduced Al accumulation in roots. Taken together, these findings suggest that ZmALDH participates in Al-induced oxidative stress and Al accumulation in roots, conferring Al tolerance in transgenic Arabidopsis.


Assuntos
Adaptação Fisiológica/genética , Aldeído Desidrogenase/genética , Alumínio/toxicidade , Arabidopsis/genética , Arabidopsis/fisiologia , Genes de Plantas , Zea mays/genética , Adaptação Fisiológica/efeitos dos fármacos , Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Sequência de Aminoácidos , Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Prolina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo , Superóxidos/metabolismo , Nicotiana/metabolismo
11.
Biochem Biophys Res Commun ; 590: 103-108, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34974297

RESUMO

Calcium (Ca2+) signaling represents a universal information code in plants, playing crucial roles spanning developmental processes to stress responses. Ca2+ signals are decoded into defined plant adaptive responses by different Ca2+ sensing proteins, including calmodulin (CaM) and calmodulin-like (CML) proteins. Although major advances have been achieved in describing how these Ca2+ decoding proteins interact and regulate downstream target effectors, the molecular details of these processes remain largely unknown. Herein, the kinetics of Ca2+ dissociation from a conserved CaM and two CML isoforms from A. thaliana has been studied by fluorescence stopped-flow spectroscopy. Kinetic data were obtained for the isolated Ca2+-bound proteins as well as for the proteins complexed with different target peptides. Moreover, the lobe specific interactions between the Ca2+ sensing proteins and their targets were characterized by using a panel of protein mutants deficient in Ca2+ binding at the N-lobe or C-lobe. Results were analyzed and discussed in the context of the Ca2+-decoding and Ca2+-controlled target binding mechanisms in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Peptídeos/metabolismo , Arabidopsis/efeitos dos fármacos , Cinética , Meliteno/farmacologia , Proteínas Mutantes/metabolismo
12.
Plant Cell Rep ; 41(2): 337-345, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34817656

RESUMO

KEY MESSAGE: The application of flagellin 22 (flg22), the most widely studied PAMP, enhance crop cold tolerance. ICE1-CBF pathway and SA signaling is involved in the alleviation of cold injury by flg22 treatment. Pathogen infection cross-activates cold response and increase cold tolerance of host plants. However, it is not possible to use the infection to increase cold tolerance of field plants. Here flagellin 22 (flg22), the most widely studied PAMP (pathogen-associated molecular patterns), was used to mimic the pathogen infection to cross-activate cold response. Flg22 treatment alleviated the injury caused by freezing in Arabidopsis, oilseed and tobacco. In Arabidopsis, flg22 activated the expression of immunity and cold-related genes. Moreover, the flg22 induced alleviation of cold injury was lost in NahG transgenic line (SA-deficient), sid2-2 and npr1-1 mutant plants, and flg22-induced expression of cold tolerance-related genes, which indicating that salicylic acid signaling pathway is required for the alleviation of cold injury by flg22 treatment. In short flg22 application can be used to enhance cold tolerance in field via a salicylic acid-depended pathway.


Assuntos
Resposta ao Choque Frio/fisiologia , Flagelina/farmacologia , Moléculas com Motivos Associados a Patógenos/imunologia , Imunidade Vegetal/fisiologia , Plântula/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Brassica napus/efeitos dos fármacos , Brassica napus/fisiologia , Clorofila/metabolismo , Resposta ao Choque Frio/imunologia , Produtos Agrícolas/imunologia , Congelamento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transferases Intramoleculares/genética , Moléculas com Motivos Associados a Patógenos/metabolismo , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo , Plântula/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Nicotiana/fisiologia
13.
Plant Cell Environ ; 45(2): 378-391, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34919280

RESUMO

Maintenance of genome stability is an essential requirement for all living organisms. Formaldehyde and UV-B irradiation cause DNA damage and affect genome stability, growth and development, but the interplay between these two genotoxic factors is poorly understood in plants. We show that Arabidopsis adh2/gsnor1 mutant, which lacks alcohol dehydrogenase 2/S-nitrosoglutathione reductase 1 (ADH2/GSNOR1), are hypersensitive to low fluence UV-B irradiation or UV-B irradiation-mimetic chemicals. Although the ADH2/GSNOR1 enzyme can act on different substrates, notably on S-hydroxymethylglutathione (HMG) and S-nitrosoglutathione (GSNO), our study provides several lines of evidence that the sensitivity of gsnor1 to UV-B is caused mainly by UV-B-induced formaldehyde accumulation rather than other factors such as alteration of the GSNO concentration. Our results demonstrate an interplay between formaldehyde and UV-B that exacerbates genome instability, leading to severe DNA damage and impaired growth and development in Arabidopsis, and show that ADH2/GSNOR1 is a key player in combating these effects.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Formaldeído/efeitos adversos , Glutationa Redutase/genética , Raios Ultravioleta/efeitos adversos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/farmacologia , Glutationa Redutase/farmacologia , Mutagênicos/farmacologia
14.
Cell Rep ; 37(11): 110125, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34910911

RESUMO

Plants tailor immune responses to defend against pathogens with different lifestyles. In this process, antagonism between the immune hormones salicylic acid (SA) and jasmonic acid (JA) optimizes transcriptional signatures specifically to the attacker encountered. Antagonism is controlled by the transcription cofactor NPR1. The indispensable role of NPR1 in activating SA-responsive genes is well understood, but how it functions as a repressor of JA-responsive genes remains unclear. Here, we demonstrate that SA-induced NPR1 is recruited to JA-responsive promoter regions that are co-occupied by a JA-induced transcription complex consisting of the MYC2 activator and MED25 Mediator subunit. In the presence of SA, NPR1 physically associates with JA-induced MYC2 and inhibits transcriptional activation by disrupting its interaction with MED25. Importantly, NPR1-mediated inhibition of MYC2 is a major immune mechanism for suppressing pathogen virulence. Thus, NPR1 orchestrates the immune transcriptome not only by activating SA-responsive genes but also by acting as a corepressor of JA-responsive MYC2.


Assuntos
Aminoácidos/toxicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Indenos/toxicidade , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Anti-Infecciosos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Correpressoras , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Pseudomonas syringae/química , Ácido Salicílico/farmacologia , Transdução de Sinais
15.
Nat Commun ; 12(1): 7303, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911942

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs), including salicylic acid (SA), target mammalian cyclooxygenases. In plants, SA is a defense hormone that regulates NON-EXPRESSOR OF PATHOGENESIS RELATED GENES 1 (NPR1), the master transcriptional regulator of immunity-related genes. We identify that the oxicam-type NSAIDs tenoxicam (TNX), meloxicam, and piroxicam, but not other types of NSAIDs, exhibit an inhibitory effect on immunity to bacteria and SA-dependent plant immune response. TNX treatment decreases NPR1 levels, independently from the proposed SA receptors NPR3 and NPR4. Instead, TNX induces oxidation of cytosolic redox status, which is also affected by SA and regulates NPR1 homeostasis. A cysteine labeling assay reveals that cysteine residues in NPR1 can be oxidized in vitro, leading to disulfide-bridged oligomerization of NPR1, but not in vivo regardless of SA or TNX treatment. Therefore, this study indicates that oxicam inhibits NPR1-mediated SA signaling without affecting the redox status of NPR1.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Piroxicam/análogos & derivados , Ácido Salicílico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Meloxicam/farmacologia , Piroxicam/farmacologia
16.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884659

RESUMO

The membrane-bound NAC transcription (NTL) factors have been demonstrated to participate in the regulation of plant development and the responses to multiple environmental stresses. This study is aimed to functionally characterize soybean NTL transcription factors in response to Al-toxicity, which is largely uncharacterized. The qRT-PCR assays in the present study found that thirteen out of fifteen GmNTL genes in the soybean genome were up-regulated by Al toxicity. However, among the Al-up-regulated GmNTLs selected from six duplicate gene pairs, only overexpressing GmNTL1, GmNTL4, and GmNTL10 could confer Arabidopsis Al resistance. Further comprehensive functional characterization of GmNTL4 showed that the expression of this gene in response to Al stress depended on root tissues, as well as the Al concentration and period of Al treatment. Overexpression of GmNTL4 conferred Al tolerance of transgenic Arabidopsis in long-term (48 and 72 h) Al treatments. Moreover, RNA-seq assay identified 517 DEGs regulated by GmNTL4 in Arabidopsis responsive to Al stress, which included MATEs, ALMTs, PMEs, and XTHs. These results suggest that the function of GmNTLs in Al responses is divergent, and GmNTL4 might confer Al resistance partially by regulating the expression of genes involved in organic acid efflux and cell wall modification.


Assuntos
Alumínio/farmacologia , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Glycine max/efeitos dos fármacos , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Transativadores/genética , Transativadores/metabolismo
17.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830250

RESUMO

The plant nucleus plays an irreplaceable role in cellular control and regulation by auxin (indole-3-acetic acid, IAA) mainly because canonical auxin signaling takes place here. Auxin can enter the nucleus from either the endoplasmic reticulum or cytosol. Therefore, new information about the auxin metabolome (auxinome) in the nucleus can illuminate our understanding of subcellular auxin homeostasis. Different methods of nuclear isolation from various plant tissues have been described previously, but information about auxin metabolite levels in nuclei is still fragmented and insufficient. Herein, we tested several published nucleus isolation protocols based on differential centrifugation or flow cytometry. The optimized sorting protocol leading to promising yield, intactness, and purity was then combined with an ultra-sensitive mass spectrometry analysis. Using this approach, we can present the first complex report on the auxinome of isolated nuclei from cell cultures of Arabidopsis and tobacco. Moreover, our results show dynamic changes in auxin homeostasis at the intranuclear level after treatment of protoplasts with free IAA, or indole as a precursor of auxin biosynthesis. Finally, we can conclude that the methodological procedure combining flow cytometry and mass spectrometry offers new horizons for the study of auxin homeostasis at the subcellular level.


Assuntos
Arabidopsis/metabolismo , Fracionamento Celular/métodos , Núcleo Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Nicotiana/metabolismo , Células Vegetais/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/ultraestrutura , Técnicas de Cultura de Células , Fracionamento Celular/instrumentação , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Centrifugação/métodos , Citometria de Fluxo , Homeostase/fisiologia , Indóis/farmacologia , Espectrometria de Massas , Células Vegetais/efeitos dos fármacos , Células Vegetais/ultraestrutura , Reguladores de Crescimento de Plantas/metabolismo , Protoplastos/química , Nicotiana/efeitos dos fármacos , Nicotiana/ultraestrutura
18.
ACS Chem Biol ; 16(11): 2151-2157, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34505514

RESUMO

Several small-molecule perturbagens of the plant endomembrane system are known, but few selectively disrupt endoplasmic reticulum (ER) structure and function. We conducted a microscopy-based screen for small-molecule disruptors of ER structure and discovered eroonazole, a 1,2-4-triazole that induces extensive ER vesiculation in Arabidopsis seedlings. To identify eroonazole targets, we synthesized a clickable photoaffinity derivative and used it for whole-seedling labeling experiments. These reveal that the probe labels multiple oleosins, plant membrane proteins that stabilize ER-derived lipid droplets. Oleosin labeling is absent in an oleosin1234 quadruple mutant and reduced using an inactive analog. Cellular analyses of the ER in the quadruple mutant demonstrate that oleosins are required for normal ER structure during seed germination and suggest that perturbation of oleosin function by eroonazole underlies its effects on seedling ER structure.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Retículo Endoplasmático/fisiologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Estrutura Molecular , Plântula , Coloração e Rotulagem
19.
J Plant Physiol ; 266: 153520, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34536904

RESUMO

Aluminum (Al) toxicity is one of the primary factors limiting crop production in acid soils worldwide. The cell wall is the major target of Al toxicity owing to the presence of many Al binding sites. Previous studies have found that XTH, encoding xyloglucan endohydrolase (XEH) and xyloglucan endotransglucosylase (XET), could participate in cell wall extension and affect the binding ability of the cell wall to Al by impeding the activities of these two enzymes. In this study, we found that ZmXTH, an XTH gene in maize, was involved in Al detoxification. The Al-induced up-regulation of ZmXTH occurred in the roots, prominently in the root tips. Additionally, the expression of ZmXTH was specifically induced by Al3+ but no other divalent or trivalent cations. Compared with the wild-type Arabidopsis, ZmXTH overexpressing plants grew more healthy and had decreased Al content in their root and root cell wall after Al stress. Overall, the results suggest that ZmXTH could confer the Al tolerance of transgenic Arabidopsis plants by reducing the Al accumulation in their roots and cell walls.


Assuntos
Alumínio , Arabidopsis/efeitos dos fármacos , Glicosiltransferases/metabolismo , Zea mays/enzimologia , Alumínio/toxicidade , Arabidopsis/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Zea mays/genética
20.
Nat Commun ; 12(1): 4979, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404804

RESUMO

Relative contributions of pre-existing vs de novo genomic variation to adaptation are poorly understood, especially in polyploid organisms. We assess this in high resolution using autotetraploid Arabidopsis arenosa, which repeatedly adapted to toxic serpentine soils that exhibit skewed elemental profiles. Leveraging a fivefold replicated serpentine invasion, we assess selection on SNPs and structural variants (TEs) in 78 resequenced individuals and discover significant parallelism in candidate genes involved in ion homeostasis. We further model parallel selection and infer repeated sweeps on a shared pool of variants in nearly all these loci, supporting theoretical expectations. A single striking exception is represented by TWO PORE CHANNEL 1, which exhibits convergent evolution from independent de novo mutations at an identical, otherwise conserved site at the calcium channel selectivity gate. Taken together, this suggests that polyploid populations can rapidly adapt to environmental extremes, calling on both pre-existing variation and novel polymorphisms.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Alelos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Genoma de Planta , Poliploidia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Mutação , Polimorfismo de Nucleotídeo Único , Alcaloides de Triptamina e Secologanina/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA